首页> 外文OA文献 >Estimating the parameters of a generalized lambda distribution
【2h】

Estimating the parameters of a generalized lambda distribution

机译:估计广义Lambda分布的参数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The method of moments is a popular technique for estimating the parameters of a generalized lambda distribution (GLD), but published results suggest that the percentile method gives superior results. However, the percentile method cannot be implemented in an automatic fashion, and automatic methods, like the starship method, can lead to prohibitive execution time with large sample sizes. A new estimation method is proposed that is automatic (it does not require the use of special tables or graphs), and it reduces the computational time. Based partly on the usual percentile method, this new method also requires choosing which quantile u to use when fitting a GLD to data. The choice for u is studied and it is found that the best choice depends on the final goal of the modeling process. The sampling distribution of the new estimator is studied and compared to the sampling distribution of estimators that have been proposed. Naturally, all estimators are biased and here it is found that the bias becomes negligible with sample sizes n⩾2×103. The .025 and .975 quantiles of the sampling distribution are investigated, and the difference between these quantiles is found to decrease proportionally to View the MathML source. The same results hold for the moment and percentile estimates. Finally, the influence of the sample size is studied when a normal distribution is modeled by a GLD. Both bounded and unbounded GLDs are used and the bounded GLD turns out to be the most accurate. Indeed it is shown that, up to n=106, bounded GLD modeling cannot be rejected by usual goodness-of-fit tests.
机译:矩量法是一种用于估计广义Lambda分布(GLD)参数的流行技术,但已发表的结果表明,百分位数法可提供更好的结果。但是,百分位数方法无法以自动方式实现,并且自动方法(例如星舰方法)会导致样本量过大而导致执行时间过长。提出了一种新的估计方法,该方法是自动的(不需要使用特殊的表格或图表),并且可以减少计算时间。部分基于常规的百分位数方法,此新方法还需要选择将GLD拟合到数据时要使用的分位数。研究了u的选择,发现最佳选择取决于建模过程的最终目标。研究了新估计量的采样分布,并将其与已提出的估计量的采样分布进行比较。自然地,所有估计量都是有偏差的,在这里发现,对于样本大小n⩾2×103,该偏差变得可以忽略。对采样分布的.025和.975分位数进行了研究,发现这些分位数之间的差异与源成比例地减小。目前,结果和百分位估计都相同。最后,当使用GLD对正态分布进行建模时,研究了样本量的影响。有界GLD和无界GLD均被使用,有界GLD证明是最准确的。实际上,事实表明,直到n = 106时,有界的GLD建模都不能被通常的拟合优度测试所拒绝。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号